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Abstract: An approximation to the Maxwell-Semiconductor Bloch
equations is used to model transverse mode dynamics of vertical-cavity
surface-emitting lasers (VCSELs). The time-evolution of the spatial
profiles of the laser field and carrier density is solved by a finite-
difference algorithm. The algorithm is fairly general; it can handle de-
vices of any shape, which are either gain or index guided or both. Also
there is no a priori assumption about the type or number of modes. The
physical modeling includes the nonlinear carrier dependence of the op-
tical gain and refractive index and dispersion effects on the gain and
the refractive index are also included.
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1. Introduction

VCSELs have become increasingly important for many applications, such as optical in-
terconnects and optical data storages. In many applications, high beam quality or high
output powers or both are critical requirements. To help the design and optimization
of VCSELs for such applications, it is essential to have a simulation model that in-
cludes the time evolution of the transverse space dependence of the beam. Such models
allow arbitrary transverse profiles of laser intensity or carrier density to develop in time
without any a priori assumption about the number and types of transverse modes. In
addition, extensive research [1] in the past has shown that many-body effects are impor-
tant in influencing the optical gain and the refractive index of semiconductor quantum
wells. It is thus important to include the key many-body effects in simulation models
for semiconductor lasers.

Current methods of VCSEL simulation are limited in various ways from this
more complete modeling. For example, some methods select a few transverse modes
beforehand and then solve their time evolution either by ordinary or partial differential
equations [2]. Other methods solve an eigenvalue problem for the Helmholtz equation,
which is uncoupled to the material equations. Finally, other methods solve time inde-
pendent, coupled rate equation models, which contain diffractive terms (in the wave
equation) and diffusive transverse terms (in the carrier density equation). Common lim-
itations to most of these approaches are that the gain and refractive index are linearized
with respect to the density (with the use of phenomenological coefficients), the disper-
sions with respect to wavelength of the gain and refractive index are neglected and
finally that the many-body effects are not included.

There are two main methods to developing simulations with the complete mod-
eling of the time evolution of arbitrary transverse profiles, as mentioned above. The first
method is to solve the coupled Maxwell-Semiconductor Bloch equations [1] directly. This
approach has been employed either on an envelope equation approximation or on the
original Maxwell-Semiconductor Bloch equations [3-5]. Due to the time scales and the
large set of equations involved, it is only feasible to solve this set of equations for a time
development of up to picoseconds for a 1-dimensional simulation. Current computer ca-
pabilities render it impractical to simulate the time evolution of the transverse profiles
of semiconductor lasers for a time development on a scale of several nanoseconds, and
it is on this time scale that most of the interesting features of lasers occur.

The second method solves an approximation to the Maxwell-Semiconductor
Bloch equations. These approximate equations are called the Maxwell Effective Bloch
Equations [6,7] This model combines the space-time resolution with microscopic many-
body effects in a way that is both accurate enough and computationally manageable,
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and it has been used to simulate edge-emitting high power lasers [8,9]. In this approach,
partial differential equations are solved in space and time for the coupled wave and
material functions. Both the nonlinear carrier density dependence and the dispersions
with respect to wavelength of the gain and refractive index are included in the mod-
eling. This bottom-up approach uses measured material parameters and quantum well
structure parameters, with the number of free parameters minimized. This simulation
can resolve the time evolution down to picoseconds of the transverse profiles. Finally,
this simulation is versatile in being able to readily model devices with any shape of
active region, which are either gain or index guided, and without any assumption of the
type or number of transverse modes.

In this paper, this model is applied to VCSELs. The Maxwell-Effective Bloch
Equations model is adapted to VCSEL simulations by assuming a fixed mode profile
along the longitudinal direction in VCSELs. This approximation is valid for VCSELs
because after about a picosecond, the longitudinal mode structure is established [10,11].
There is not very much deviation from the assumed mode structure thereafter, because
of the very large mode spacing between the adjacent longitudinal modes. In these sim-
ulations, the VCSELs are based on InGaAs/GaAs quantum well structures.

A finite-difference algorithm has been developed for solving the Maxwell Effec-
tive Bloch Equations [12,13]. Preliminary calculations [12] have been performed for two
current apertures; a circular aperture with diameter 7.5 microns and a square aperture
with sides of length 7.5 microns also. For each aperture three levels of pumping current
were applied to obtain steady light fields of the fundamental modes and the light-current
characteristics near threshold were determined. Next calculations [13] were performed
for circular apertures at 5.0, 7.5, and 10.0 microns in diameter and at various pumping
levels. The resulting light fields were time dependent with characteristic time scales
on the picosecond time scale. Different types of transverse mode dynamics occurred
that included multiple mode beatings, rotating waves, convective waves, and nonlinear
locking of transverse modes.

In this paper [14], the effects of including index confinement and using ring
shaped current apertures are studied. In these calculations, it was found that the average
light output on the nanosecond time scale was steady, even though on the picosecond
time scale the light output was very time dependent and in addition at relatively high
current pumping levels, the light output appeared chaotic-like. Movie clips [15] show
the transverse mode dynamics of the cases studied in this paper.

References 16 and 17 discuss experimental results concerning transverse mode
dynamics of VCSELs.

2. Governing Equations

After assuming a fixed mode profile along the longitudinal direction in VCSELs, the
resulting Maxwell Effective Bloch Equations model is given by the following equations
[6,7,10,11].
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dP1

dt
= −Γ1(N)P1 + i(ωc − ω1(N))P1 − iε0εbA1(N)E (5)

Here E is the complex laser field envelope amplitude, N is the total carrier
density P0 and P1 are the effective material polarization functions that have been con-
structed from microscopic theory [6], δn(x, y) is the guiding index profile, 52⊥ is the
Laplacian in the transverse plane, (x,y), c is the speed of light, ε0 is the permittivity
of free space, i is the complex number

√
-1, ωc is the optical carrier wave frequency in

radians per seconds, nb is the background index of refraction, ng is the group index of
refraction, εb = n

2
b is the background relative permittivity, K = ωcnb/c is the optical

wavenumber in the cavity with a background index of refraction nb, κ is the cavity loss,
DN is the carrier diffusion coefficient, γn is the nonradiative decay constant or carrier
loss rate due to spontaneous and nonradiative processes, η is the quantum efficiency,
e is the electron charge, h̄ = h/2π, where h is Plank’s constant, Γ is the confinement
factor, and L is the cavity length.

Many-body effects and quantum well structure information are contained in
the density dependent coefficients χ0(N), the effective background susceptibility, with
real and imaginary parts χ0,r(N) and χ0,i(N) respectively; Γ1(N), the gain bandwidth,
ω1(N), the detuning, and A1(N), the strength of the Lorentzian oscillator. The theo-
retical basis for the Maxwell-Effective Bloch Equations and their derivation from the
semiconductor Bloch equations and Maxwell’s equations is given in Reference 6. Also,
the derivation of the five density dependent coefficients, which model the optical sus-
ceptibility, χ(ω,N), is given in Reference 6.

2.1 Optical Susceptibility

The five density dependent coefficients that describe the optical susceptibility in the
Maxwell-Effective Bloch Equations are determined in two steps. In the first step, the
optical gain and refractive index are computed using the specifications of the material
compositions and other material parameters, including the microscopic many-body in-
teractions, the bandstructure for the valence bands, and the specifics of the quantum
well heterostructure.

Using current standard procedures, [1] for a given total carrier density, N, the
semiconductor Bloch equations are solved for the distribution functions, nek(t) and n

h
k(t),

the occupation probabilities for electron and holes respectively, and pk(t), the interband
dipole expectation function with momentum h̄k. Next, P (t), the induced polarization
is computed [1] from the pk(t). Then the optical susceptibility χ(ω,N) is determined
from the Fourier transforms of the electric field, E(ω), and the induced polarization,
P (ω) by the equation

P (ω) = ε0εbχ(ω,N)E(ω) (6)

From the optical susceptibility, the refractive index, δn(ω,N), and the optical
gain, G(ω,N), are determined by the equation,

χ(ω,N) =
2

nb
δn(ω,N)−

i

K
G(ω,N) (7)

In the second step, the optical susceptibility function, χ(ω,N) is approximated
by a background susceptibility χ0(N) and one Lorentzian oscillator χ1(ω,N).

χ(ω,N) ≈ χ0(N) + χ1(ω,N) ≡ χ0(N) +
A1(N)

iΓ1(N) + (ωc + ω − ω1(N))
(8)
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Now the five density dependent coefficients have been determined for one value
of the total carrier density N. This two step procedure is repeated for several values,
(approximately twenty five values in the present case), of N to determine these functions
over the range of interest. In this derivation, plasma heating is ignored, the approxi-
mations are made to locally fit the gain peak for each value of N and the distribution
functions are assumed to be quasi-Fermi in solving the semiconductor Bloch equations.
By using this method, the five material functions were determined. The resulting gain
curves obtained by these Lorentzian approximations are shown in Fig. 1 for four values
of the total carrier density N, (depicted by solid lines), and they are compared to the
gain curves obtained by solving the semiconductor Bloch equations, (depicted by dashed
lines), for which the material is described by an InGaAs/GaAs quantum well structure.

1200.0 1250.0 1300.0
Photon energy (meV)

-0.006

-0.004

-0.002

0.000

Im
(χ)

Figure 1. The Computed gain spectra (dashed lines) and parameter gain spectra
(solid lines); here the gain equals G(ω,N) = -KIm(χ(ω,N))

3. Computed Results

For these calculations, some of the parameters in the governing equations are the fol-
lowing. The two parameters that seem to be the most important in determining the
dynamics were Γ1(N), the gain bandwidth, 1/Γ1(N) was approximately 13.8 femtosec-
onds initially in the current aperture area and the light dynamics changed on that time
scale and γn, the nonradiative decay constant, 1/γn was 1 nanosecond, and at that time
scale the laser field was approximately steady. The light wave length was 0.98 microns,
the circular current apertures was 10.0 microns in diameter, the cavity length L was
144 nanometers and the confinement factor Γ was one fourth. The value used for index
guiding was -0.05, which was the decrease in the refractive index outside of the active
region.

For each case, a movie clip [15] can be viewed to see the transverse mode
dynamics.

3.1 Case 1. Disk without index guiding

The first case was of a disk shaped current aperture without index guiding and the
pumping current was 0.55 milliamps. Figure 2 shows the resulting steady laser field.
The field rose to a fairly sharp high peak. The most intense light is the lightest in the
figure and the lower intensity is darker. Outside the darker area, there is no light.
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Figure 2. Steady Laser Intensity Field

3.2 Case 2. Disk with index guiding and low pumping current

The second case was of a disk shaped current aperture with index guiding and the
pumping current was again 0.55 milliamps. Figure 3 shows the resulting laser field at
one instant of time. The index guiding has a confining effect on the light field and the
more intense field becomes dynamic with the peak making a generally rotating motion
and the peak amplitude heaving to larger and smaller values. Figure 4 shows the average
light field over 3.3 nanoseconds. Now the bright center is broader than in Case 1, but
the peak value is lower.

Figure 3. Instantaneous Light Field Figure 4. Average Light Field

3.3 Case 3. Ring with index guiding and low pumping current

The third case was of a ring shaped current aperture with index guiding. The outer
radius was again 10 microns, the inner radius was 4 microns and the pumping current
was 0.48 milliamps. Figure 5 shows the resulting laser field at one instant of time. There
are now 4 peaks of intensity located symmetrically around the ring current pumping
area. Again, the field is dynamic with the 4 peaks generally rotating around the ring and
the 4 peak amplitudes heaving to larger and smaller values in unison. Figure 6 shows
the average light field over 3.3 nanoseconds. Now there is a bright ring shaped area over
the current aperture with a dark center.
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Figure 5. Instantaneous Light Field Figure 6. Average Light Field

3.4 Case 4. Disk with index guiding and high pumping current

The fourth case was of a disk shaped current aperture with index guiding and the
pumping current was now raised to 2.35 milliamps. Figure 7 shows the resulting laser
field at one instant of time. Now there are multiple peaks moving about in a chaotic-
like manner, (but with a general rotation of the peaks on the rim), with some peaks
disappearing and others appearing and their amplitudes rising and falling. Figure 8
shows the average light field over 3.3 nanoseconds. In comparison to Case 2, which had
a lower pumping current, here the bright center of the average field has an even brighter
circular edge, outside of which the light field dies away quickly.

Figure 7. Instantaneous Light Field Figure 8. Average Light Field

3.5 Case 5. Ring with index guiding and high pumping current

The final case was the same ring shaped current aperture of case 3 but the pumping
current was now raised to 2 milliamps. Figure 9 shows the resulting laser field at one
instant of time. There are now many peaks of intensity located around the ring current
pumping area. They have various amplitudes and are generally slightly rotating, (i.e.
slightly rocking back and forth), around the ring with some peaks disappearing and
others appearing and their amplitudes rising and falling. Figure 10 shows the average
light field over 3.3 nanoseconds. As in Case 3, there is a bright ring shaped area over
the current aperture with a dark center.
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Figure 9. Instantaneous Light Field Figure 10. Average Light Field

4. Conclusion

A finite-difference algorithm has been developed for solving the Maxwell Effective Bloch
Equations. This algorithm was applied to VCSELs. Calculations were performed for
circular current apertures that were 10.0 microns in diameter without and with index
guiding and both for disk and ring shaped current injection areas. Various steady current
pumping levels were used. For many cases, the resulting light fields were time dependent
with characteristic time scales on the picosecond time scale. Different types of transverse
mode dynamics occurred that could be described in many cases as multiple moving and
heaving peaks, although in the case of the ring shaped current aperture, the multiple
peaks of light intensity tended to rotate around the ring while heaving in amplitude.
At relatively high current pumping levels, the dynamics of the light output appeared
chaotic-like. However, in all cases, the average light output on the nanosecond time scale
was essentially steady.
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